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Abstract
Local coupled-cluster singles–doubles theory (LCCSD) is a theorist’s attempt to capture
electron–electron correlation in a fast amount of time and with chemical accuracy. Many of the
difficult computational hurdles have been navigated over the last twenty years, including how to
construct a linear scaling algorithm and how to produce smooth potential energy surfaces.
Nevertheless, there remains the question of just how accurate a local correlation model can be,
and what are the chemical limits within which local models are largely applicable. Here, we
investigate how accurately can LCCSD approximate full CCSD for cases of atomization
energies, isomerization energies, conformational energies, barrier heights and electron affinities.
Our conclusion is that LCCSD computes relative energies that are correct to within
1–2 kcal mol−1 of the CCSD energy using relatively aggressive cutoffs and over a broad range
of different molecular environments—alkane isomers, dipeptide conformations, Diels–Alder
transition states and electron attachment in charge delocalized systems. These findings should
push the reach of local correlation applications into new research terrain, including molecules
on metal cluster surfaces or perhaps even metal–molecule–metal clusters.

(Some figures in this article are in colour only in the electronic version)

1. Local CCSD: a small review

1.1. Historical overview

Over the past two decades, computational physicists and
chemists by and large have succeeded in producing linear
scaling algorithms, capable of capturing the electronic
structure of large atomic systems at the mean-field level.
Today, density functional (DFT) calculations are routinely
done on systems with more than a thousand atoms, yielding
valuable information about the band structure of large
systems [1]. Nevertheless, the problem of measuring electron–
electron correlation remains a daunting problem. On the one
hand, if one seeks to construct the formal wavefunction for
the ground state of a molecule, the computational problem
scales exponentially with the number of electrons [2] and
converges very slowly with basis set size, making the complete

solution (full configuration interaction [CI]) unfeasible for
systems with more than 10 electrons or so. On the other hand,
while DFT formally solves the problem of energy levels for
interacting electrons around a nuclear potential quickly and
without huge basis set effects, because the exact exchange–
correlation potential is unknown, DFT cannot treat highly
correlated systems, it cannot be systematically improved and
it does not easily yield information about magnetic field
interactions. Our purpose in this paper is to review and
assess the accuracy of one wavefunction-based method for
overcoming the problem of exponential scaling and quickly
measuring electron–electron correlation: local coupled-cluster
singles–doubles theory (LCCSD).

Just as for large mean-field calculations, the basic idea of
local coupled-cluster theory (CCSD) [3–11] is to invoke the
locality of individual electronic orbitals in order to achieve
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a huge speed-up in computational time within the context of
a CCSD calculation. The coupled-cluster approach [12–15]
towards calculating electronic correlation is to make the
ansatz that the n-electron fully correlated ground state has the
following form:

�CCSD = eT̂�0. (1)

Here, �0 is a single Slater determinant, often the Hartree–Fock
(HF) ground state, and T̂ is an excitation operator accounting
for electronic correlation. We now denote the occupied orbitals
of the HF or mean-field calculation as i jkl and the virtual
orbitals as abcd , where the virtual orbitals are what remain
of our original basis after we have projected out the occupied
basis. Then, for the case of coupled-cluster singles–doubles
(CCSD) calculation, T̂ assumes the form T̂ = ∑

ia ta
i a†

aai +
∑

i jab tab
i j a†

aa†
bai a j . At low order, the CCSD ansatz is

�CCSD = �0 +
∑

ia

tia�
a
i +

∑

i jab

(
ta
i tb

j + tab
i j

)
�ab

i j + · · · (2)

where �a
i is the ground state �0 with occupied i replaced by

virtual a, and so forth. In order to complete the calculation
and solve for the electronic correlation, one plugs the CCSD
ansatz (equation (2)) into the Schrödinger equation Ĥ� =
E� and one effectively transforms the problem of electron–
electron correlation into a nonlinear algebraic equation for
ta
i and tab

i j , the so-called t amplitudes. One needs only
solve for the t amplitudes in order completely characterize
the electronic correlations in the ground state (up to the
doubles level). Unfortunately, when one works through the
algebra [15], one finds that the CCSD algorithm scales as N6

where N is the size of the basis set. One is forced to compute
many matrix products between integrals and t amplitudes (e.g.∑

ef te f
i j 〈ab||ef 〉), which lead to the problematic sextic scaling.

The strength of the CCSD ansatz, however, is that the
algorithm sums up correlations to infinite order and calculates
correlation energies more accurately than MP2 perturbation
theory [16].

Rather than give up on expensive, wavefunction-based
methods for computing electron–electron correlation, local
correlation theory (originally formulated by Pulay and Saebø in
the 1980s [17]) circumvents the expensive scaling by limiting
the excitations to local excitations T̂local = ∑

ia close ta
i a†

aai +
∑

i jab close tab
i j a†

aa†
bai a j . For ia not close together, one sets

ta
i = 0 and the same for tab

i j . By limiting the number
of variables (ta

i and tab
i j ) to a linear number (the so-called

domains), one reduces the dimensionality of the problem so
that one can more easily and quickly solve the electronic
problem. In the 1990s, Friesner [18] and Carter [19] built
upon the ideas of Saebø and Pulay by recognizing that one
could exploit locality not just in limiting the number of t-
amplitudes variables, but also in computing the necessary
Hamiltonian matrix elements. For matrix products of two-
electron integrals with other tensors, Friesner and Carter
invoked the pseudospectral approach for calculating two-
electron integrals and gained even more computational savings
than before. Subsequently, over the past decade, Schütz and
Werner [4, 20–31] have applied and updated these methods to a
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Figure 1. Computational CPU time for an LCCSD calculation (per
iteration) for an alkane in a Gaussian cc-pVDZ basis, calculated
according to the algorithm in [11].

wide variety of locally correlated electronic structure methods,
including LCCSD, achieving a linear scaling algorithm in
certain regimes. According to their approach, one divides up
the amplitudes into strong, moderate, weak and very weak
amplitudes and treats the different amplitudes at different
theoretical levels. By limiting the number of strong amplitudes,
one can achieve enormous computational savings. In figure 1,
we plot the CPU time for running alkane calculations
according to our version of LCCSD [11].

Finally, once one has made all necessary local approxi-
mations for constructing a locally correlated electronic wave-
function at one fixed nuclear geometry, there remains the ques-
tion of how, if possible, one can patch such wavefunctions
together for different nuclear geometries. A straightforward
analysis shows that, without any additional work, the local cor-
relation approach of Pulay, Saebø, Schütz, Werner and others
yields discontinuous potential energy surfaces [32]. By choos-
ing which ta

i and tab
i j to compute explicitly at which level of the-

ory, the Pulay–Saebø–Schütz–Werner algorithm chooses coor-
dinates to describe electronic correlation which are specifically
designed for one particular choice of nuclear geometry. When
the nuclei in the molecule move, the local domains of elec-
tronic interaction can change (i.e. the domains are variable),
and when this occurs the local correlation algorithm often pro-
duces discontinuities in the electronic energy which cannot be
smoothly patched together. As such, LCCSD as tradition-
ally formulated is not reliable for complicated, multidimen-
sional geometrical optimizations nor can it be used for Born–
Oppenheimer dynamics, even though case-by-case solutions
are sometimes possible [33] over certain regions of configu-
ration space. This problem of smooth PES’s is non-trivial to
solve. In fact, in contrast to the standard Pulay variable-domain
algorithms, alternative fixed-domain approaches within local
correlation theory have been designed over the past ten years
by Head-Gordon et al (e.g. DIM [34, 35], TRIM [36, 37])
specifically in order to avoid this problem of discontinuous
PES’s. However, when constructing smooth, well-defined,
fixed-domain local correlation algorithms, redundant orbitals
have been employed in the past, which slows down the ap-
proach in general.
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Over the last three years, the authors have suggested
and demonstrated an alternative approach to LCCSD theory
from the standard Pulay–Saebø–Schütz–Werner algorithm, and
this method achieves linear scaling while not forfeiting the
smoothness of the PES’s [9–11]. The details of this approach
will be summarized below in section 1.2.2, where we also
provide plots of the correlation energy along a rotational
degree of freedom. The ability to produce a fast and smooth
LCCSD algorithm has been a significant step forward for
local correlation theory, and in the future we expect there
will be standard LCCSD geometric optimizations and, we
hope, eventually Born–Oppenheimer dynamics on a locally
correlated CCSD electronic surface.

1.2. Theoretical nuts and bolts

The design of an accurate and efficient local correlation
algorithm requires first and foremost a criterion by which one
decides which quartets of integrals i jab to correlate together
among all the tab

i j in equation (2). Second, there is the question
of how to obtain smooth potential energy surfaces. Third,
efficiency requires that one approximate the integrals 〈i j ||ab〉
in some fashion, just as one approximates the amplitudes tab

i j .
We now treat these ideas in turn.

1.2.1. Selection criteria. Because we want to capture only
local correlation, we need a selection criteria for measuring
locality. In fact, it is natural to construct a function gi jab

where gi jab is equal to 1 when i jab are deemed close together,
and equal to 0 when i jab are far apart. For reasons to be
discussed later, we call gi jab a four-electron bump function,
though for the moment, it appears to be just a standard
characteristic function. Several options exist for constructing
g. For computational efficiency, one certainly wants to pick
a selection criteria which works pairwise in terms of a two-
particle bump function:

gi jab = g(1)
i j g(2)

ab g(3)
ia g(4)

jb g(5)
ib g(6)

ja . (3)

Even so, several options still exist. For instance, most
obviously, one could choose to select orbital pairs (ia) by an
orbital exchange integral (ia|ia) [9] or the distance between
centroids (|ri − rA|) [10] or some other similar criteria. The
standard Boughton–Pulay criterion [38] chooses pairings based
on the contributions of localized molecular orbitals into atomic
orbitals.

We have decided to select pairs of orbitals by a hybrid
criteria of distance and spatial extent, which we call the bubble
method. We select the orbital pair ia according to a criterion
φia , defined by

σi = 〈
i |(r − 〈i |r|i〉)2|i 〉1/2

(4)

σa = 〈
a|(r − 〈a|r|a〉)2|a〉1/2

(5)

φia = |ri − ra | − λia (σi + σa) . (6)

Here λia is a parameter which tells us how to model the spatial
extent of localized orbitals. For the present paper, we choose
λia = 1.

Accordingly, the two-electron bump function gia can be
defined by some cutoff (c∗):

gia(φia) = 1 φia < c∗ (7)

gio(φia) = 0 φia > c∗. (8)

Finally, as first suggested by Pulay and Saebø, local
correlation theory amounts to locally approximating the CCSD
ansatz in equation (1):

�Full CCSD = eT̂�0 −→ �LCCSD = eg·T̂�0 (9)

and then solving the Schrödinger equation straightforwardly to
find the amplitudes T:

〈
�excited|e−g·THeg·T|�o

〉 = 0. (10)

Here |�excited〉 = |�a
i 〉 or |�ab

i j 〉, which closes our equations for
the t amplitudes, T. Now, because gia is either 1 or 0 depending
on the overlap of i and a, we now have a basic local correlation
theory.

1.2.2. Smooth potential energy surfaces. According to
the standard Pulay–Saebø–Schütz–Werner approach, the local
domains of electronic interaction can change as the nuclear
geometry of a molecule changes. When this occurs, the
local correlation algorithm often produces discontinuities in
the electronic energy. Russ and Crawford found these
discontinuities to be of the order of 1–5 mHartree for small
covalent systems [32] undergoing dissociation.

Over the past three years, the authors have shown that
the solution to the problem of discontinuous PES’s lies in
‘bumping’ the amplitudes in the amplitude equations rather
than enforcing a strict cutoff as in equation (7) [9–11]. In
so doing, one can achieve mathematically smooth potential
energy surfaces while retaining the computational savings of
a linear scaling local correlation algorithm. More precisely,
the ‘bumping’ procedure is a three-step procedure. First, one
must be sure that, as the molecular geometry changes, one
can localize all occupied and virtual orbitals smoothly. For
the occupied orbitals, smooth and unique localized orbitals
can be found by employing a slight variation of the Boys
localization method [10, 39, 40]. Smooth localization of the
virtual orbitals is more complicated because the virtual space is
rugged, but smoothly localized orbitals can be produced using
tricks designed around a minimal basis separation [41].

Second, we modify the bump function, so that it no longer
has discontinuities, as in equation (7), by redefining gia :

gia(φia) = 1 φia < c1 (11)

gia(φia) = 1

1 + e− 2|c1−c0 |
c1−φia

+ |c1−c0 |
φia −c0

φia ∈ (c1, c0) (12)

gio(φia) = 0 φia > c0. (13)

Here, we choose parameters c1, c0 so that |c0−c1| is a bumping
window needed for smooth PES’s. We choose the following
parameters for our windows:

cstrong
1 = 0.58 Å cstrong

0 = 1.48 Å (14)
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cmedium
1 = 2.12 Å cmedium

0 = 2.65 Å. (15)

There are two parameters because, in practice, we use two
bumping functions. See [11] and the appendix for more details.

Third, instead of using equation (10) as a starting point, we
begin with the full coupled-cluster ansatz from equation (1) and
plug it into the Schrödinger equation, arriving at the standard
nonlinear equations for all of the t amplitudes without yet any
local approximations:

〈
�excited|e−T(t(n))H(I(n), F(n))eT(t(n))|�o

〉 = 0. (16)

We now rearrange as follows:

I(n) + A(d)(n) · t + R(t, I(n), F(n)) = 0. (17)

Between equations (16) and (17), we have pulled out the
largest, zeroth-order terms in the equations. Here n represents
nuclear coordinates, t represents the t amplitudes for which we
must solve, I(n) represents integrals dependent on the nuclear
coordinates, A(d)(n) is a diagonal matrix dependent on the
nuclear coordinates and R(t, n) is a complicated expression,
involving matrix products of integrals I, the Fock matrix F
and t amplitudes t. We now ‘bump’ the amplitude equations
(equation (17)) by multiplying the bump function g by the t
amplitudes in two places: (i) the t term in the R term and (ii) the
entire R term on the outside:

I(n) + A(d)(n) · t + G · R(G · t, I(n), F(n)) = 0. (18)

Here G is a diagonal matrix made up of bump functions.
Effectively, we have changed the Hamiltonian to force it to
admit a locally correlated wavefunction, rather than guessing
a locally correlated wavefunction in the beginning. Locality is
enforced because gi jab has to equal 1 when i jab are deemed
close together, and equal 0 when i jab are far apart, and gia jb

almost always multiplies tab
i j . Note, though, that we never set

tab
i j to zero even for tab

i j very weak. Instead, it goes naturally to
the perturbative limit:

tweak = A(d)(n)−1 · I(n) (19)

where the energetic sum of all of these contributions can be
summed up exactly in one swoop. This is the reason why this
approach yields smooth potential energy surfaces.

Finally, let us write explicitly the bumped and smooth
local equations for one case, the MP2 example. In terms of
the Fock matrix (i.e. the mean-field Hamiltonian F), the exact,
unapproximated equation for the amplitudes is

〈i j ||ab〉 +
∑

e

tae
i j fbe −

∑

e

tbe
i j fae −

∑

m

tab
im fmj

+
∑

m

tab
jm fmi = 0. (20)

We then separate out the largest diagonal terms and put
these amplitude equations in the form of equation (17):

〈i j ||ab〉 + ( faa + fbb − fii − f j j)t
ab
i j

+

⎧
⎪⎪⎨

⎪⎪⎩

∑
e tae

i j fbe (1 − δbe) −
∑

e tbe
i j fae (1 − δae) −

∑
m tab

im fmj
(
1 − δmj

) +∑
m tab

jm fmi (1 − δmi )

⎫
⎪⎪⎬

⎪⎪⎭

= 0. (21)

The local, bumped equation corresponding to equa-
tion (18) is

〈i j ||ab〉 + (εa + εb − εi − ε j )t
ab
i j

+ gi jab

⎧
⎪⎪⎨

⎪⎪⎩

∑
e gi jaetae

i j fbe (1 − δbe) −
∑

e gi jbetbe
i j fae (1 − δae) −

∑
m gimabtab

im fmj
(
1 − δmj

)+∑
m g jmabtab

jm gmi fmi (1 − δmi)

⎫
⎪⎪⎬

⎪⎪⎭

= 0 (22)

where εi = fii .
Using this idea, the mathematical smoothness of our

LCCSD potential energy surfaces is guaranteed by the
implicit function theorem [42], which says that we can
invert equation (22) to find t smoothly as a function of
n. Moreover, in a recent article [11], we have shown that,
with our parameters, certain bond-making and bond-breaking
trajectories will not admit artificial points x in configuration
space and tangent directions �y such that ∇|x · �y = 0 or
∇∇|x · �y = �0. In other words, in one dimension, our
smoothed, local PES will have no artificial maxima, minima
or inflection points: f ′(x) 
= 0, f ′(x) 
= 0. This defines a
notion of chemically smooth potential energy surfaces, which
should be meaningful for future energy optimizations and
Born–Oppenheimer dynamics. To convince the reader, in
figure 2, we draw graphs of the potential energy surface
and the gradient of the surface for C–C bond rotation in
propane. Here, one curve has been computed following the
traditional approach of ignoring smoothness, while the other
has been computed following our prescription for producing
smooth PES’s. The smoothed graphs are indeed smooth. The
unsmoothed graphs are nearly smooth to the naked eye, though
the first derivative shows clear discontinuities of the order of
0.05 kcal/mol/degree. These discontinuities will be much
bigger for local approximations tighter than those we make,
and there are much larger discontinuities (1–5 kcal mol−1) in
the energy (and, consequently, a chaotic derivative) for bond-
breaking and bond-breaking events [9, 32]. In all cases of
bond-breaking checked so far, however, our procedure retains
the chemical smoothness of the PES [11].

1.2.3. Approximating the integrals. The final consideration
in a local correlation algorithm is if and how to approximate
the integrals that enter the calculation. Much tedious work
suggests that, if one approximates the amplitudes, one can and,
in fact, should approximate the two-electron integrals and Fock
matrix elements. As a practical matter, this means that in the
amplitude equations, one should replace

〈i j ||ab〉 −→ gi jab 〈i j ||ab〉 (23)

f pq −→ gpq f pq . (24)

We have found that this approximation leads to both a
faster and, paradoxically, more accurate algorithm. See [11]
and the data in section 2.1.

1.3. Remaining doubts: the question of accuracy

Having achieved a fast and smooth algorithm for calculating
energies according to a local coupled-cluster ansatz, there
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Figure 2. Smoothed and unsmoothed LCCSD curves for the rotation of propane around a C–C bond in a cc-pVDZ basis. The smoothed
curves set cstrong

1 = 0.58 Å and cstrong
0 = 1.48 Å, and the unsmoothed curves set cstrong

1 = cstrong
0 = 1.48 Å.

remains the task of verifying the accuracy of the LCCSD
method and identifying the limits of its applicability. Auer
and Nooijen [43] have done extensive calculations showing
that one must use domains much larger than ours if we
seek complete chemical accuracy, where atomization errors of
medium-sized molecules are always less than 1 kcal mol−1 and
decay monotonically to zero as the constraints are relaxed.

Nevertheless, for our purposes, we are willing to make
more severe approximations, allowing the atomization energies
of molecules to have errors of 1–5 kcal mol−1, provided
that relative molecular energies (of many different types) are
smaller than 1 kcal mol−1. Our purpose in the present paper is
to test our LCCSD algorithm against a background of different
chemical problems, as we attempt to learn (i) how to estimate
the accuracy of a local model and (ii) to discover what are the
chemical limits wherein a local model is applicable.

2. Testing the accuracy of the LCCSD algorithm

In order to assess the accuracy of the LCCSD approach, the
algorithm described above (and in [11]) has been implemented
in the Q-Chem quantum chemistry package [44]. There is an

inherent difficulty in measuring the accuracy of local methods
because the severity of a local approximation can only be tested
on relatively large molecules, but such molecules are often
too big for a standard CCSD calculation (remembering the
sixth-order scaling). Thus, in this paper, we have focused on
examples with 8–10 heavy atoms for which both full and local
CCSD calculations can be completed and compared. In order
to assess the accuracy of our method, we have measured a
variety of conformational and isomerization energies, barrier
height energies and electron-attachment energies. In all of the
examples tested (with the parameters from section 1.2.2), we
find that the atomization energies of the LCCSD algorithm are
within 6 kcal mol−1 of the CCSD energy (and usually under 4);
moreover, relative energies of different isomers, conformers,
transition states and charge states are usually correct to within
1 kcal.

2.1. Isomerization energies, conformational energies and
periodic trends

In table 1, we report the energetic gap between two
different conformations of alanine dipeptide, one ‘globular’
and one ‘extended’, as shown in figure 3. We have

5
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Table 1. The ground-state energies of globular and extended conformations of alanine dipeptide treated at different levels of theory for
electron–electron correlation. LCCSD version 0 does not bump two-electron integrals and is described in [10], while LCCSD version 1 does
bump integrals and is our recommended algorithm from [11]. ‘% Ampls.’ signifies the percentage of the amplitudes t ab

i j for which gstrong
i jab > 0

in equation (3), so that these amplitudes must be calculated explicitly by the algorithm according to equation (9). Similarly, ‘% Ints.’ signifies
the percentage of the two-electron integrals 〈pq||rs〉 for which gstrong

pqrs > 0, and so, according to equation (23), these integrals must be
calculated explicitly and stored. The basis is cc-pVDZ and the molecules have been optimized at the RIMP2 level of theory [45].

Dipeptide
Full MP2
(Hartree)

Full CCSD
(Hartree)

Local CCSD
Vers. 0 (Hartree)

Error
(ELCCSD − ECCSD)
(kcal mol−1)

Local CCSD
Vers. 1 (Hartree)

Error
(ELCCSD − ECCSD)
(kcal mol−1)

Extended −494.355 30 −494.425 20 −494.417 83 4.6 −494.422 39 1.8
Globular −494.437 73 −494.513 20 −494.505 71 4.7 −494.509 65 2.2
Diff.
(kcal mol−1)
Eglob − Eext

−51.7 −55.2 −55.1 −54.8

%Ampls. Ext. 100 100 7.2 7.3
%Ampls. Glob. 100 100 8.3 8.5
%Ints. Ext. 100 100 60 9.4
%Ints. Glob. 100 100 69 11

(a)

(b)

Figure 3. (a) The extended alanine dipeptide conformation
corresponding to table 1. (b) The globular alanine dipeptide
conformation corresponding to table 1.

previously calculated the CCSD and LCCSD energetics of
these molecules [10], using an earlier version of LCCSD. The
essential difference between our older algorithm [10] and our
newer algorithm [11] is that, as discussed in section 1.2.3, the
newer version bumps the amplitudes and the integrals in order
to gain computational efficiency, whereas before we included
all necessary integrals and approximated only the amplitudes.

All relevant data is included in table 1, including
energetics and the sizes of the approximations. From the
data, one sees the remarkable fact that, even though the newer
version makes more approximations than the older version,
the energetics from the newer version are closer to the CCSD
energetics than the older version. While the older version

has a serendipitous cancellation of errors to get the relative
conformational energy correct to within 0.1 kcal, the newer
version appears far more accurate and stable, cutting in half
the error in atomization energies. This empirical fact—
that bumping the integrals and amplitudes together greatly
increases the accuracy of the atomization energies relative to
bumping the amplitudes alone—has been widely reproduced
in our LCCSD calculations. It appears to be a rare example
where one can gain computational speed and accuracy at the
same time.

In table 2a, we report the energetic gap between a
branched and a linear alkane with eight carbon atoms. This
system has been studied in depth by Grimme [46], who pointed
out the difficulty in getting the correct isomerization energy,
where (according to experiment) the branched isomer is about
2 kcal mol−1 more stable than the linear molecule. Note that,
for all calculations, intramolecular basis set superposition error
(BSSE) ought to lower the energy of the branched alkane
relative to the linear alkane, as a Gaussian basis will saturate
function space much faster for a compact molecule rather
than for an extended molecule. Nevertheless, Hartree–Fock
incorrectly predicts that the linear isomer is more stable by a
very large margin, whereas MP2 over-corrects and assumes the
branched structure is much too stable relatively. Even coupled-
cluster gets the relative stability wrong in a double-zeta basis.
One finds the correct solution only by going to a triple-zeta
basis and correcting between an MP2 and CCSD calculation.
As table 2a demonstrates, our local methods parallel the full
methods every step of the way, producing a corrected answer
which is less than 1 kcal away from the full, corrected solution.

Finally, in order to assess how sensitive our algorithm is
to our choice of molecules with lighter, first row atoms, we
repeat the same calculation of branched versus linear 8-mer for
a silane rather than an alkane in table 2b. This is a crucial
test of our approach, for our current algorithm chooses which
localized orbitals to correlate together based on the distance
of one from the other and the size of the orbital (measured as
〈(r−〈r〉)2〉). The hope is, that by accounting for the size of the
orbitals, the theory should extend naturally to molecules with
heavier atoms, which have more diffuse electron clouds around
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Table 2a. Calculations for the ground-state energy of branched and linear eight-alkane isomers. Both molecules have been optimized at the
RIMP2 level of theory in a cc-pVDZ basis [45].

Molecule Basis

Branched octane
(2,2,3,3-tetramethyl
butane) (Hartree)

Linear octane
(n-octane) (Hartree)

Ebranched − Elinear

(kcal mol−1)

HF cc-pVDZ −313.441 28 −313.458 53 10.82
Full MP2 cc-pVDZ −314.649 55 −314.643 40 −3.9
Local MP2 cc-pVDZ −314.646 20 −314.640 60 −3.5
Full CCSD cc-pVDZ −314.755 95 −314.756 13 0.1
Local CCSD cc-pVDZ −314.752 91 −314.753 84 0.6
HF cc-pVTZ −313.525 25 −313.543 12 11.2
Full MP2 cc-pVTZ −315.096 24 −315.087 40 −5.6
Local MP2 cc-pVTZ −315.092 12 −315.083 89 −5.2
Corrected
CCSDa

cc-pVTZ −315.202 64 −315.200 14 −1.6

Corrected local
CCSDa

cc-pVTZ −315.198 83 −315.197 13 −1.1

Experimental [46] −2 ± 1

a The correct relative stability is found only by combining the CCSD double-zeta energy with the MP2
triple-zeta energy: Ecorrected = ECCSD(DZ) + (EMP2(TZ) − EMP2(DZ)).

Table 2b. Branched versus linear molecules. The basis is cc-pVDZ and all molecules have been optimized at the level of RIMP2/cc-pVDZ.

Molecule Basis

Branched octasilane
(2,2,3,3-tetrahydryl
tetrasilane) (Hartree)

Linear octasilane
(n-octasilane)
(Hartree)

Ebranched − Elinear

(kcal mol−1)

HF cc-pVDZ −2321.929 88 −2321.925 27 −2.9
Full CCSD cc-pVDZ −2322.978 22 −2322.964 90 −8.4
Local CCSD cc-pVDZ −2322.968 96 −2322.954 10 −9.3

them. Nevertheless, in practice, the size of an orbital is a rather
nebulous construction, and by calculating size according to
dipole and quadrupole matrix elements, one ignores entirely
the tails of the localized orbitals (which, in reality, decay with
linear exponent, unlike the Gaussian atomic orbital basis set).
Thus, testing the applicability of a local correlation algorithm
to heavier elements is crucial. From the data, one may surmise
that LCCSD performs quite well at measuring the energetic gap
between the isomers, though the errors of the absolute numbers
(i.e. atomization energies) are more than they usually are for
lighter elements. Future testing of the accuracy of LCCSD
methods with ECP’s (i.e. pseudopotentials) will be another
crucial test of our method.

3. Barrier heights: a Diels–Alder reaction

Beyond the ground-state energy problem, another test of the
limit of local correlation theory is the applicability of the theory
to measuring barrier heights, where one must consider nuclear
geometries at which electronic orbitals are often delocalized as
bonds are being made and broken. Following the recent work
of Jones et al [47], we focus on the Diels–Alder reaction of
cyclopentadiene with cyano-substituted ethylene derivatives.

Table 3a. Experimental data from [48] showing the clear trend in
reaction rates, as one increases the number of cyano substituents.
Data taken in dioxane solution at 20 ◦C.

Rate of reaction
Dienophile 106 k2 mol−1 s−1(20 ◦C)

CN 10.4
trans-1, 2-(CN)2 81
cis-1, 2-(CN)2 91
1, 1-(CN)2 455 000
1, 1, 2-(CN)3 4 800 000
1, 1, 2, 2-(CN)4 430 000 000

Benchmark experiments on this system were made in a
classic experiment by Sauer et al [48] in 1964, who found that
the reaction rate increases by a factor 107 as one traverses the
different cyanoethylenes, beginning with the mono-substituted
molecule and ending with the tetra-substituted one. Their
classic data is replicated in table 3a.

In a recent report [47], Jones, Guner and Houk suggested
a mechanism for this Diels–Alder reaction whereby each
substituted ethylene passes through a single transition state
(shown in both figures 4 and 5) before reacting to form
the product. To this model, the authors then applied:
(i) gas-phase data yielding the activation energy of mono-
substituted ethylene reacting with cyclopentadiene [49] at
550 K and (ii) the Sauer reaction-rate data in dioxane
solution at 293 K. By assuming that the reaction rate
behaves in an Arrhenius fashion in both cases, and by
further assuming that the Arrhenius constants are ‘close
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Table 3b. Relevant energies and enthalpies in the Diels–Alder reaction of cyclopentadiene with cyano-substituted ethylene. (a), (b), (d)
from [47]. Basis sets are: (a) 6-31G(d), (b) 6-31G+(d, p) and (c) 6-31G(d, p). Geometries of (c) are from [47], i.e. optimized according to
MPW1K/6-31G + (d, p). Note that these numbers are not corrected for BSSE (see the text). Although we provide energies instead of
enthalpies in (c) columns, one can show that the contributions of vibrations and rotations is rather constant and less than 1 kcal mol−1 in all
cases (at least within the harmonic approximation at room temperature). See the text for an explanation of how the experimental numbers in
column (d) are calculated. Because these experimental numbers require the comparison of data from gas-phase and liquid-phase experiments,
the absolute barrier heights may have a systematic error, although the relative energies should be quite accurate.

Molecule HF(a) B3LYP(a) MPW1K(b) MP2(c) CCSD(c) LCCSD(c) Extrap.
�H �H �H �E �E �E Expt. �H (d)

CN 37.8 18.9 16.3 5.8 19.4 20.1 15.5
trans-1, 2-(CN)2 34.4 16.5 12.9 0.9 16.0 17.8 12.8
cis-1, 2-(CN)2 34.5 17.0 13.4 1.5 16.3 18.2 12.8
1, 1-(CN)2 30.0 11.2 8.9 0.5 13.6 15.0 9.0
1, 1, 2-(CN)3 28.0 11.9 7.7 −3.3 11.5 13.9 7.6
1, 1, 2, 2-(CN)4 26.1 12.1 5.6 −8.4 8.5 10.5 5.0

Figure 4. The transition structure for mono-cyanoethylene reacting
with cyclopentadiene, and the largest localized orbital.

enough’ between the different temperatures and gas/liquid
media, one may use the Sauer data to estimate the gas-
phase activation barriers for the Diels–Alder reaction by
��H † = RT ln(k2/k1). These experimental estimates of
the activation barriers are reported in column (d) of table 3b.
Alternatively, Jones et al also use the COSMO polarization
continuum model [50] to model the effect of bulk solvent,
and do not find any large effect. Surely, ignoring the
effects of the real quantum-mechanical liquid on a transition-
state energy barrier is certainly a drastic approximation—
but, nevertheless, it does give us a zeroth approximation
to the activation energies of the differently substituted
reactants in the gas phase. Furthermore, the relative barrier
heights of mono-through tetra-cyano-substituted ethylene
can certainly be computed rigorously in the gas phase,
giving us an interesting example for theoretical benchmark
calculations.

Besides the experimental data in column (d) of table 3b,
we also include computational data from Jones et al showing
that the B3LYP DFT functional entirely misses the correct
trend in electronic structure responsible for the reaction rates in
table 3a. Of the functionals tested by Jones et al, the only one
found to work was the MPW1K [51] functional from the Don
Truhlar group. Notice that the data presented here are formally
enthalpies, not energies. Nevertheless, Jones and coworkers
argue that nuclear motion plays almost no role in determining
the relative rates of this reaction, which are determined by the
increase in electron affinity as one adds more cyano groups to

Figure 5. The transition structure for tetracyanoethylene reacting
with cyclopentadiene, and the largest localized orbital.

ethylene. This suggestion has been consistent with all of our
frequency calculations.

Our interest in this molecular reaction was to test the
accuracy of our local CCSD algorithm relative to the full
CCSD algorithm. The reaction barrier heights of these Diels–
Alder reactions are a good test of a local correlation model for
two reasons. First, for a pericyclic reaction, multiple bonds
are being made and broken at the same time and the degree of
electronic correlation should be large, and the delocalization of
electronic orbitals should change greatly between reactants and
transition state. Second, two competing factors could introduce
systematic error into our LCCSD calculations. On the one
hand, as the number of cyano groups grows, there should be
more electron donation from the diene to the dienophile at the
transition state, giving us larger orbitals (see figures 4 and 5),
and thus more amplitudes to include exactly in the calculation.
On the other hand, as the number of cyano groups grows, the
local approximation should exclude more amplitudes from the
calculation. If our LCCSD is to be stable and accurate, it must
be able to balance these effects naturally and correctly judge
the energy of each configuration. The data shown in table 3b
shows that our LCCSD algorithm is, in fact, able to reproduce
the CCSD numbers to an accuracy of 2–3 kcal mol−1.

For all but one of the calculations in table 3b, the basis
set of choice is double-zeta (either 6-31G(d) or 6-31G(d,
p)) with no augmented, diffuse basis functions. We expect
that these calculations may be compared, one to the other,
without worrying too much about the effect of basis set—
polarization functions on the hydrogens are unlikely to be
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Table 3c. In the first two columns, the counterpoise correction for BSSE has been applied to the data in table 3b, raising the barrier heights.
The BSSE correction makes the LCCSD barrier height accurate to within 1 kcal mol−1 of the CCSD answer in a double-zeta basis. In the
third and fourth columns, we further correct our barrier heights to account for a triple-zeta basis, using Ecorrected = ECCSD(CP, DZ) +
(EMP2(CP, TZ) − EMP2(CP, DZ)), which lowers the barrier heights.

Molecule
CCSD �E
(6-31g*) w/CP

LCCSD �E
(6-31g*) w/CP

CCSD �E w/CP
and TZ Corr.

LCCSD �E
w/CP & TZ Corr

Extrap. Expt.
�H (a)

CN 27.1 26.2 19.4 18.6 15.5
trans-1, 2-(CN)2 24.0 24.1 16.4 16.5 12.8
cis-1, 2-(CN)2 24.4 24.6 16.7 16.9 12.8
1, 1-(CN)2 21.2 21.0 14.1 13.8 9.0
1, 1, 2-(CN)3 19.8 20.3 12.5 12.9 7.6
1, 1, 2, 2-(CN)4 17.9 17.7 10.0 9.8 5.0

a See text and table 3b for an explanation of the experimental values.

crucial. However, the MPW1K data (of Jones et al) was
calculated with augmented functions (6−31+G(d, p)), which
could give the algorithm a relatively unfair advantage when
calculating barrier heights, for diffuse functions may strongly
help stabilize a transition-state geometry with partially formed
bonds.

Note that the figures in table 3b have not been corrected for
basis set superposition error (BSSE). In the first two columns
of table 3c, we make the counterpoise correction for BSSE
and we find that, while the ordering of the relative barrier
heights is unmoved, in fact, the LCCSD energies become much
closer to the CCSD energies. The changes in the overall sizes
of the barrier heights due to basis set superposition error are
large in the 6-31g(d, p) basis: the DFT and HF barrier heights
go up rather uniformly by around 4–5 kcal mol−1, the MP2
barriers are raised about 9 kcal mol−1 and the CCSD/LCCSD
numbers are raised about 7 kcal mol−1. These counterpoise
corrections which add to the barrier height are, of course,
compensated by the effect of basis set size: the double-zeta
basis is incomplete here. In fact, MP2 calculations in a
triple-zeta basis give barrier heights that are 7–8 kcal mol−1

lower than those in a double-zeta basis (data not shown).
If we further correct the counterpoise-corrected numbers by
this basis set correction, we end up with the values in the
third and fourth columns of table 3c. In summary, certainly
more accurate calculations should be done in the future to
better estimate the barrier heights involved for bigger basis
sets. Nevertheless, our data suggests that, when we account
for BSSE, our LCCSD algorithm is able to reproduce CCSD
barrier heights to well within 1 kcal mol−1. Finally, we
mention that our best CCSD/LCCSD numbers are not so close
to the best DFT numbers, although they are still far lower than
the overbound HF reaction. Our calculations imply that the
experimental numbers in table 3b may suffer from a systematic
error because they compare liquid-and gas-phase data together.
Alternatively, either our CCSD energies are not converged
with basis set or there are significant differential contributions
from neglected three-body or higher correlations not present in
CCSD (i.e. triples, quadruples, etc). These are the most logical
ways to explain the discrepancy between our CCSD numbers
and the experimental values.

4. Relevance to charge delocalization

Our final example of the applicability of local CCSD
theory is for the case of measuring the electron affinity of
tetracyanoethylene (TCNE, experimentally, 66.2 kcal mol−1)4.
Our data is found in table 4. For this example, the mean-
field solution is far from correct. The HF electron affinity
badly overbinds the extra electron, arising as the result of spin
contamination. Rather than the expected value of 〈S2〉 = 0.75,
we find for the unrestricted HF calculation, 〈S2〉 = 0.92 in the
6-31g* basis and 0.84 in the cc-pVTZ basis.

Within the context of our LCCSD calculations, we now
point out that one can construct two very different approaches
for locally measuring the electron–electron correlation of a
radical anion. Consider that the anion has 33 alpha electrons
and 32 beta electrons. One can ‘localize’ the electronic orbitals
in two different ways. First, one can localize all 33 alpha
electrons together and hope that good local orbitals emerge.
Second, one can localize the 32 tightly bound alpha electrons,
which should correspond to the 32 tightly bound beta electrons
in the closed-shell molecule, and then leave the 32nd attached
electron totally delocalized, and to be treated separately. The
first algorithm produces larger localized alpha orbitals than
the second algorithm (ignoring the one loosely held electronic
orbital which is purposefully kept delocalized). Examples
of the most diffuse, localized occupied orbitals are shown in
figures 6(a) and (b).

Once one has fixed the localized orbitals, one can next
run a standard LCCSD calculation as described above. This
provides two very different approaches for computing LCCSD
energies, which are listed in table 4 as versions 1 and 2.
Remarkably, one finds that both methods are successful at
treating the correlation problem, though version 1 is slightly
more accurate than version 2 in this case. Of course, by
allowing the loosely attached electron to remain delocalized,
one must pay a higher computational cost, so version 1 is the
recommended algorithm of choice.

Nevertheless, the success of version 2 at capturing
electronic correlation is noteworthy and deserves mention. Let
us label i as the loosely attached electronic orbital in figure 6(b)
which is not localized, but suppose we localize all of the
other occupied orbitals. Because i is delocalized, i overlaps

4 Lide D (ed) 2008 CRC Handbook of Chemistry and Physics.
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Table 4. The ground-state energies of neutral and anionic tetracyanoethylene (TCNE) treated at different levels of theory for
electron–electron correlation. The molecule has been optimized at the level of 6-31G*/RIMP2. The experimental answer is 66.2 kcal mol−1.

Method Basis
Neutral TCNE
(Hartree)

Anion TCNE
(Hartree)

Electron affinity
(kcal mol−1)

Error Ecalc − Eexpt

(kcal mol−1)
% Strong
t-amps.

% Integr.
included

HF 6-31G* −444.887 57 −445.012 03 78.1 11.9 — —
MP2 6-31G* −446.303 20 −446.362 80 37.4 −28.8 100 100
CCSD 6-31G* −446.300 69 −446.391 86 57.2 −9.0 100 100
LCCSD
version 1 6-31G* −446.299 75 −446.391 239 57.4 −8.8 9.7 16.5
LCCSD
version 2 6-31G* −446.299 75 −446.390 138 56.2 −10.0 10.2 16.7
CCSD(T) 6-31G* −446.372 47 −446.455 21 51.9 −14.3 100 100
HF cc-pVTZ −446.025 07 −446.158 69 83.8 17.6 — —
MP2 cc-pVTZ −446.841 75 −446.927 60 53.9 −12.3 100 100
CCSDa,c cc-pVTZ −446.816 69 −446.935 44 74.5 8.3 100 100

[69.2] [3.0]
LCCSDa,b cc-pVTZ −446.797 52 −446.913 15 72.6 6.4 2.4 5.6
version 1 [67.1] [0.9]
LCCSDa,b cc-pVTZ −446.797 52 −446.913 37 72.7 6.5 2.5 5.5
version 2 [68.5] [2.3]

a The numbers in brackets represent our final, triple-zeta, triples-corrected estimate of the electron affinity:
E A = ECCSD(TZ) + ECCSD(T )(DZ) − ECCSD(DZ).
b In order to minimize computational time, we used more severe cutoffs for these LCCSD calculations than usual, setting
cstrong

1 = cstrong
0 = 0.58 Å and cmedium

1 = cmedium
0 = 2.12 Å. These are much stronger cutoffs than usual: see section 1.2.2. This explains our

rather large errors in atomization energy, even though the relative energies are still accurate.
c Note that a full CCSD calculation is possible here only because of the high point-group symmetry of TCNE.

with all localized occupied orbitals jk and localized virtual
orbitals abef . If we use a good selection criteria for electronic
amplitudes which accounts for spatial extent, we must select
all i j and ia for strong amplitude coupling, where j and a
are localized orbitals. Thus, if we consider the formal CCSD
equations which must be solved, we find that we must compute
a large number of virtual two-electron integrals 〈ab||ef 〉 with
a and e far away—since a and e are coupled together by
Rab

i j = te f
i j 〈ab||ef 〉 (in equation (17)) and i couples to e and

a (since i is delocalized). We conclude that, if we want to
formally allow delocalization and also achieve a fast linear
scaling algorithm, we should bump (i.e. approximate) the two-
electron integrals, as we suggested earlier in section 1.2.3.
Indeed, the two-electron integrals were indeed bumped in
the calculations labeled version 2 in table 4. Note that,
for tetracyanoethylene, the correlation energy of the neutral
molecule is 1.413/1.776 Hartree and the correlation energy
of the anion is 1.380/1.792 Hartree (at the DZ/TZ level),
and this large difference in correlation energy suggests that
the extra electron is strongly correlated to other electrons in
the system. Thus, the fact that versions 1 and 2 give very
similar correlation energies, with totally different ansatzes for
the wavefunctions—and very different approximations of the
integrals—proves that bumping of the two-electron integrals is
not necessarily a bad approximation.

Finally, we point out how close our final, triple-zeta,
triples-corrected electron affinities are to experiment. There is
certainly some luck associated with our triple-zeta calculations.
As discussed in table 4, for our LCCSD triple-zeta calculations,
we have used much more severe cutoffs than usual in order to
save time. This results in a rather large error in atomization
energy, though the relative energy of the anion to the neutral
remains remarkably constant. Most likely, we have found a

fortuitous cancellation of errors, though it is conceivable that
this error cancellation is the result of neglecting a constant
long-distance correlation.

5. Discussion

This paper has surveyed a small number of molecular examples
where computational chemists would like to calculate the
electronic structure of molecules to within chemical accuracy
(i.e. less than 1 kcal mol−1 from the exact value). For the
most part, we have found that local correlation theory, in
the form of local coupled-cluster theory, can accurately and
reliably calculate the effect of electron–electron correlation
as well as full CCSD for a variety of molecular geometries:
equilibrium ground-state geometries, anion and transition-state
geometries, and even molecules with heavier elements (or
at least those in the third periodic row, including silicon).
Indeed, one can measure electronic correlation energies using
LCCSD which are usually within 1 kcal mol−1 of the exact
CCSD energy even for very subtle differences, including
isomerization energies. Of course, the trick is how strictly
does one choose the cutoffs. We emphasize that, for this
paper, for all double-zeta calculations, we have used the cutoffs
of our previous paper [11], wherein the cutoffs and bumping
regions were chosen so as to have smooth potential energy
surfaces. Although we have been forced (for computational
reasons) to increase the severity of our cutoffs for the TZ
calculations in table 4, we have never relaxed our cutoffs in
such a way as to increase the accuracy of the calculations
reported in this paper. Moreover, the reader who is generally
skeptical of local correlation methods should be comforted
by the simple fact that, when performing local correlation
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(b)

(a)

Figure 6. (a) The most diffuse localized orbital from anionic TCNE
assuming all alpha, occupied electronic orbitals are localized. This
orbital is used in version 1 of table 4. (b) The loosely attached, but
occupied, electronic orbital of anionic TCNE which is not localized
in version 2 of table 4.

calculations, one cannot avoid a penalty by relaxing the cutoffs
of the calculation for increased accuracy. Indeed, we have
shown [11] that there is a stiff penalty that must be paid
for insisting on smooth potential energy surfaces in LCCSD,
requiring the large bumping regions mentioned in section 1.2.2.
If one ignores the smoothness of the PES’s, one can gain at
least a factor of 2–3, if not more, in computational speed.

We must admit, however, that our LCCSD method does
not have the complete chemical accuracy which is the aim of
the LCCSD model of Auer and Nooijen [43]. While Auer and
Nooijen seek to locally approximate the CCSD by converging
the local correlation energy to a stable, monotonically decaying
energetic limit, we make no claim to have a completely
converged solution. Although Auer and Nooijen will certainly
achieve a more stable algorithm than ours, they must sacrifice
so much in computational time that the benefits of locality do
not become paramount until one reaches quite large systems.
Our philosophy is that we want to approximate the CCSD
correlation energy by a LCCSD energy that (i) is fast and
(ii) has an error relative to CCSD which is less than the innate
CCSD error relative to full CI:

|ELCCSD − ECCSD| < |ECCSD − EFull CI|. (25)

We believe that our LCCSD algorithm satisfies this
constraint of accuracy using our choice of parameters given
in this paper. Perhaps the largest source of error in our
algorithm is that the moderate amplitude correlations depend
on the strong amplitude correlations, but not vice versa. This
essentially corresponds to the weak-coupling approximation
as discussed by Auer and Nooijen [43]. Correcting such
a unidirectional flow of information should be explored in
the future. Nevertheless, it is very interesting that this
nonsymmetric algorithm for computing LCCSD energies does
not lead to very large errors. It is empirically true that, if we
compute the LCCSD energies of strong amplitudes first, and
then we compute the LMP2 energies of moderate amplitudes
as a function of the strong amplitudes, our final energy is
close to the exact CCSD energy. This is not at all true if one
defines strong and moderate amplitudes in the context of an
LMP2 calculation. In other words, if one defines strong LMP2
amplitudes as those amplitudes that should give the strongest
LMP2 contributions, and then one computes moderate LMP2
amplitudes as a function of the strong LMP2 amplitudes, one
finds that the final answer is usually off by 10–20 kcal. A good
LMP2 algorithm cannot have any strong LMP2 amplitudes,
only moderate LMP2 amplitudes, and all of the moderate
LMP2 amplitudes must be computed self-consistently. Thus,
either the strong LCCSD amplitudes have a much smaller
correlation length than the ‘strong’ LMP2 amplitudes, or
perhaps there is a natural cancellation of errors between the
strong LCCSD amplitudes and moderate LMP2 amplitudes. In
any event, the unidirectional flow of information from strong
to moderate amplitudes does not appear to be a large source of
error in our algorithm. Furthermore, in our limited experience
with the strong-coupling limit of Auer and Nooijen [43], where
the strong amplitudes are allowed to depend on the moderate
amplitudes, we found there was often numerical instability
when using our current cutoff parameters.

Moving beyond the calculation of ground-state or
transition-state energies for insulators, our success at
approximating the electron affinity of tetracyanoethylene by
two different algorithms suggests many new and exciting
directions for the LCCSD algorithm. If one can use local
coupled-cluster theory to treating molecules with true charge
delocalization, then perhaps one might even be capable of
describing the correlations of an insulating molecule on a
small metallic cluster or perhaps the electronic correlation on
a metal–molecule–metal junction. That would be a remarkable
application of a local theory. There must, however, be a
physical limit to the applicability of a local CCSD theory,
however, as the size of a metal cluster grows, because for a
large enough metal cluster, a mean-field HF or DFT ground
state cannot be a good-enough zeroth-order approximation for
a correlated non-periodic wavefunction. In that macroscopic
limit, the bandgap shrinks to zero and the CCSD equations
cannot be inverted (or at least not in the standard formalism).

We must now mention that the most disturbing and
worrisome piece of data presented in this paper comes from the
branched and linear silane 8-mer (table 2b). One notes that the
error in atomization energy for the silanes is double the error
in atomization for the alkanes, even though the correlation
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energy for the silanes is less than the correlation energy for
the alkanes (tables 2a, 2b). This suggests that, in the future,
more work must be done to either (i) verify that the bubble
method correctly describes the sizes and correlation lengths of
localized orbitals with heavy atoms, or (ii) invent a new, but
still differentiable, function of orbitals which will determine
locality. Such a function should necessarily work with ECP’s
(i.e. pseudopotentials) as well.

Finally, we mention that the next phase of development
for our LCCSD algorithm should be the construction of the
gradient and the application of the triples (T) correction. If
these advances can be implemented, we hope that our LCCSD
algorithm will become more widely used in the computational
chemistry community. More distantly in the future, we note
that the size of the systems which can be treated at present
by LCCSD are still nowhere near as large as those that can
be treated at the mean-field DFT level for several reasons.
First, local CCSD has not yet been efficiently parallelized to
the knowledge of the authors. Second, there has not been
any development of a CCSD or LCCSD algorithm that can be
applied to periodic systems in more than one dimension [52].
Many theoretical and computational challenges remain in the
field of localized electron–electron correlation theory, and we
hope to see much more progress in the years to come.

6. Conclusions

This paper has investigated the accuracy of local coupled-
cluster theory as a computational, quantum-mechanical tool
designed to capture electronic correlation with chemical
accuracy (<1 kcal mol−1) and with broad applicability. Over
a broad range of difficult chemical problems, including
isomerization energies, conformational energies, electron
affinities and barrier heights, the accuracy of the LCCSD
holds up. The only worrisome piece of data is that the error
in atomization energy for the branched and linear silanes is
double the error for the corresponding alkanes. This suggests
that more calculations must be done on molecules with heavy
elements beyond the third row of the periodic table in order to
ascertain how accurately LCCSD treats very diffuse electronic
orbitals around very heavy nuclei, or equivalently, electronic
orbitals in the presence of a pseudopotential (i.e. ECP’s).
Finally, we have presented here data suggesting that LCCSD
theory can successfully capture the electronic correlation of
anions and transition states, molecular geometries which often
have a great deal of charge delocalization. This data raises
the prospect that local correlation theory may be extended
far beyond standard quantum chemical processes. We will
investigate this claim much more thoroughly in the future.
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Appendix

For completeness, we now write down how and why we
have two bump functions in equation (14). The R matrix in
equation (18) can be naturally split up into the perturbative
MP2 piece (RMP2) and the higher-order, coupled-cluster piece
(RCC): R = RMP2 + RCC. The MP2 piece is almost always
found to decay more slowly. When one makes this division, it
follows that, for more accuracy, one can choose two different
bump functions: gstrong (also referred to as GCC) corresponding
to RCC and gweak (also referred to as GMP2) corresponding to
RMP2. One then has two different classes of t amplitudes,
those amplitudes for which gstrong > 0 and those for which
gmoderate > 0.

If we insist that the weak amplitudes depend only on the
strong amplitudes, but not vice versa, we get the equations:

I(n) + A(d)(n) · t + GMP2 · RMP2(GCC · t, I(n), F(n))

+ GCC · RCC(GCC · t, I(n), F(n)) = 0.

These are the precise definitions of the bump-function
constants in equation (14). If one furthermore bumps the
integrals and Fock matrix elements, one arrives at our final,
smooth LCCSD equations:

I(n) + A(d)(n) · t + GMP2 · RMP2(GCC · t, GCC · I(n),

× GMP2 · F(n)) + GCC · RCC(GCC · t,

× GCC · I(n), GMP2 · F(n)) = 0.
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[7] Schütz M 2002 Chem. Phys. Phys. Chem. 4 3941
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